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Abstract--

When combining data from distinct sources, there is a need

to share recta-data and other knowledge about various source

domains. Due to semantic inconsistencies and heterogeneity of

representations, problems arise in combining multiple domains

when the domains are merged. The knowledge that is irrelevant

to the task of interoperation will be included, making the result

unnecessarily complex.

This heterogeneity problem can be eliminated by mediates 9 the

conflicts and managing the intersections of the domains. For in-

teroperation and intelligent access to heterogeneous information,

the focus is on the intersection of the knowledge, since intersec-

tion will define the required articulation rules.

An algebra over domain has been proposed to use articulation

rules to support disciplined manipulation of domain knowledge

resources. The objective of a domain algebra is to provide the

capability for interrogating many domain knowledge resources,

which are largely semantically disjoint. The algebra supports for-

mally the tasks of selecting_ combining, extending, specializing,

and modifying components from a diverse set of domains.

This paper presents a domain algebra and demonstrates the

use of articulation rules to link declarative interfaces for Internet

and enterprise applications. In particular, it discusses the ar-

ticulation implementation ms part of a production syatern capable

of operating over the domain described by the [DL (interface

description language) of objects registered in multiple CORBA

servers.
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I. INTRODUCTION

Today, designers, developers, and users realize that informa-

tion in private and public databases, as on the Interuet, provides

increasing opportunities to enhance productivity. Understand-

ing the content of the available information requires the use of

domain knowledge. For example; acquiring an air fare from

a travel agency on the Internet requires an understanding of

layout (e.g. parsing) of the corresponding HTML pages. Fur-
thermore, the effective use of the knowledge to support problem

solving also requires the use of multiple domain resources, for

instance comparing prices from different agencies to meet a user

query.

A number of technologies have been developed to support

laxge-scale interoperation among distributed applications [41].

However, managing laxge-scale interoperaticn of domains re-

mains a task which requires many levels of expertise and an
adherence to standards.

Many existing systems have strong notions of interfaces. Ef-

forts like eXtensible Markup Language, the next generation of

HTML, are only ways to put structure into a web page. These

interfaces allow the specification of the domain's knowledge or

the domain component syntax. Leading efforts in interoperat-

ing among multiple domains are often implemented as the union

of multiple domains..Am immediate increase in data integration

is noticeable to data integration architects. Yet, there are con-
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sequences _ to the union of multiple domains which turn out

not to be efficient for the evolving needs of customers, such as

resource allocation (storage and stMrmg). Worst, however, the

union will become impossible to maintain.

For interoperation and intelligent access to heterogeneous

information, the focus should be on the intersection of the

knowledge, since intersection will define the required articu-

lations. The term articulation refers to the linkages which

join concepts across domains [15]. The emergent need to
define articulations between data resources has been demon-

strated and described in [24][47]. For instance, Yahoo's hierax-
chal classification and Auto.corn, "Yahoo's category Business-

and:EconomY/ComDanies/Automotive" and "Auto.corn daily
reviews" can be well articulated (linked)-.

We extend and generalize the identification of the articula-

tion to a set of manipulations, such as selecting, combining, ex-

tending, specializing, and modifying components from diverse,

common and domain-specific knowledge. To deal with most of

these issues, a domain algebra has been proposed in [46] which

is intended to support disciplined manipulation of knowledge

resources. The representation of vocabularies and their struc-

ture is termed domain knowledge whereas the operations that

combine and partition the domain knowledge in a sound and
well-behaved manner are termed a domain algebra. The basic

algebra consists of three operations, namely intersection, union

and difference (negation is considered an alternate form of the

difference). Knowledge in this paper is limited to the knowledge

that an expert can extract from a domain and not the domain
itself 2.

The objective of a domain algebra is to provide the capability

for interrogating many knowledge resources, which are largely

semantically disjoint, but where articulations have been estab-
lished. Articulation rules will enable on their own a new type

of interoperability from Server-to-Server.

This paper describes the role of a domain algebra in a medi-

ated architecture among declarative interfaces. It also demon-

strafes the use of an a/gebra which provides users and system

developers with the ability to intelligently manipulate compo-
nents in real time.

The idea of combining articulation-rules [37] with declarative

interfaces is complementary: declaxative interfaces are primarily

about specifying component syntax and distributed implemen-

tations [39], whereas articulation rules are a promising research

outcome recycled from Artificial Intelligence and have addressed

in the past issues of component design, component binding, and

component semantics.

A. Background

An introduction to domain algebra is presented in references

[46][47]. In these papers, the advantage of a domain algebra

is described. Some suggested interoperation functionalities of

the domain algebra are presented in [28]. Also, there has been

a significant amount of research in the inzeroperable systems

community. The representative literature in semantic interop-

erations is presented in [41][13][12]. Much of this work conforms

to describing interfaces which mirror the effort in the database

community [10][1] that addresses the problem at the schema

integration level [25][48]. There axe a number of similarities

with the database and knowledge-base community and the pro-

posed work: the concept of articulation [15][24], translating het-

erogeneous information into a meta-level model [34][45], active

tAlsf_ down-loading Internet classifications axe copyright infringement by U.S.

Law.

2e.g. complete schema dump.
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database [43] and associating constraints and triggers wbth ob-

jects [17]. This paper focuses on the adaptation of methods

from the heterogeneous database literature, mediation and in-

tegration aspects to the problem of disciplined manipulation of

information sources across networks, languages and platforms

(e.g. HTM:L, XML, CORBA etc.).

B. Object Oriented Bindings

Many existing systems have strong notions of interfaces.

These interfaces allow binding to services provided by their cor-

responding architectures if their interfaces are described. New

standard efforts like eXtensible Markup Language allow a Doc-

ument Type Definition (DTD) where grammars and structures

of the markup language are defined [49I.

Systems like Object Request Broker (ORB) [38] and Inter:

Language Unification (ILU)[16] promote interoperability via in-

terfaces between domains. Domains are known by their inter-

faces and became an industry standard with the Common Ob-

ject Request Broker Architecture (CORBA) often known as The

CORBA Standard. In an object-oriented approach, a domain's

interface is bound to the system's object-oriented interface defi-

nitions language. This paper will illustrate the implementation

of an ORB-to-OtLB interopertion and hence demonstrate a new

and modern approach to interoperability from Server-to-Server
3

C. A modern Approach: Server-to-Server

Considering that declarative interfaces are primarily about
specifying syntax and component implementation, it appears

that our approach complements the concept of declarative in-

terfaces for interoperabilty problems (e.g. interoperability as-

pects in XML and CORBA). There are two main differences

with the current technology: we support {i}, the heterogeneity of

the inter/aces, and 5i) the autonomy of the interfaces. The first

problem relates to the problem of semantic mismatch and granu-

larity incompatibility. The second problem is that interfaces are

defined by resources available at a compile time and hence they

may not fully cooperate in runtime (e.g a web page update).

Some issues similar to these problems have been discussed with

respect to the modern concept of coordinating distributed ob-

jects in declarative interfaces as in [21][36].

The problem of interoperation among heterogeneous systems

is central to the area of integration, as represented in [50].

The proposed modern approach of Server-to-Server has been

adopted by Science Gate Bay [42] and has been extended to sup-

port information integration on the Internee with XML. Some of

the work has appeared in parts under [28], [271. Some early im-

plementation aspects have appeared as a public software release

I291

II. KNOWLEDGE REPI%ESENTATIONS AND INTEB.OPEB.ATION

The development of the mediation model reported in thispa-

per is motivated by the need of interoperabilityamong exist-

ing domain-specific representation of knowledge (structure and

layout) and their respected formalisms (HTML, XML, Objects

etc.).

Although the spirit of this paper is to underline practical

aspects recycled from Artificial Intelligence with an objective of

matching industry current needs, what follows is a brief review

of what is commonly known in the Knowledge Representation

and Artificial Intelligence community.

The series of knowledge representation formalisms and frarae-
works starting with KL-One [7] and currently culminating in

3compare to Client-server

systems like Classic [5] and LOOM [35] provide powerful tools

and knowledge expressiveness.However, they were not intended

to interoperate.How much has to be added to theirinfrastruc-

ture and reasoning capabilityto achieve knowledge interoper-
ability is still unclear.

While knowledge representation is thought of as being a way

to resolve integration problems, most knowledge representation

formalisms have focused on paradigms which assume an inte-

grated environment and have been careless about managing the

exceptions. In our approach, we focus on these exceptions.

From a research and technical point of view, there have been

two recent efforts that open up possibilities for meaningful

knowledze interoperation: the development of context logic [31!

and knowledge interfaces for sharing [37]. The advance in con-

text logic is the notion of translating encoded knowledge relative

to its context and hence relates the knowledge to its domain.

This is the approach taken in the re-engineering of Cyc [30]

where micro-theories confine the contextual differences [24]. Ad-

vances in knowledge sharing revolve around translating multiple

knowledge, from one formalism, to multiple formalisms. How-

ever, the problem of translating many domains into different

representations will create several problems. Semantic incon-

sistencies will arise from the terms and relationships used from
the merged domains. Additional inconsistencies occur when

the knowledge-content differs both in semantics and in compo-

sitiona/granularity. In addition, the union of multiple domain

knowledge includes irrelevant knowledge and the result will be

large, unorganized, and disproportionally costly to process.

An early formal paradigm in the direction of porting knowl-

edge from one representation language into multiple ones was

done by Ontolingua [23]. Ontolingua is a mechanism for trans-
lating from a standard syntax into multiple-representation sys-

tems. However, directly translating entire knowledge to any

arbitrary representation leads to irrelevant knowledge and se-

mantic inconsistencies, disproportioned in content.

Interoperation became an industry fact with CORBA.

CORBA is a system of standards and specifications that de-

scribes how software components, as being the domain knowl-

edge, can interoperate across networks, languages and plat-
forms. CORBA allows for client-server interaction between

heterogeneous objects distributed over a wide-area network.

CORBA makes meta information describing the objects in a

system and their interfaces available so that it can access other

objects. Any object connected to an Object Request Broker

• (OR.B) can play simultaneously the role of client and server and

hence Objects can initiate calls and respond to requests. ORB

is the part of COPd3A which facilitates client-server communi-

cation and interaction between distributed objects. To reach

object interoperability and for objects to plug and play, clients

have to know exactly what they can expect from every object

they might call upon for a service.

With the success of Hypertext Markup Language (HTML)

and large-scale content distribution of heterogeneous informa-

tion, industry pushed the technology further with the eXtensi-
hle Markup Language (XML). XML was primarily intended to

meet the requirements of large-scale Web content providers for

hidustry-specific markup, vendor-neutral data exchange, one-

on-one marketing, workflow management, the processing of Web

documents by intelligent clients, and most nets-data applica-
tions.

A. Engineering a Functional Model

Information integration for Internee and enterprise applica-

tion is a relatively new but growing area of concern, moving
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well beyond objects, Hypertext and the sharing of documents-

Software and data provide the capability for active sharing of

concepts and many other tasks beyond the ubiquitous and over-
loaded information world. The Internet proved to be practical

and functional fact and deserves to be looked at pragmatically.

Even though this paper is driven by a long-range vision, the

proposed engineering methodologies allow a continuous stream

of early experiments and development. Such an approach is an

attractive alternative to the more philosophical approach, which

assumes that all fundamental issues have been solved first.

In this paper, we plan to manipulate information labeled with

the domain context where context will encapsulate the mean-

ing. A_0tber objective of this paper is to support knowledge ab-

straction between diiTerent knowledge compositions. Abstrac-

tion with context will hence play an essential role in the algebra

since different domain compositions have different context gran-

ularities. It is yet another objective of this paper to delineate

the extent of domain knowledge into partitions. But the main

objective of this paper is to assert articulation rules which link

domain knowledge. Hence, the planned domain algebra should

bring about better knowledge scaiability.

The process of abstraction separates the domain from its im-

plementation. For instance in articulating Yahoo's category

"Business-and-Economy/Companies/Automotive",

a m nAuto.co would not require the inherented hierarchy (i.e.

/Business-and-Economy/Companies/). The notion of separa-
tion was initially suggested in the scheme of the Agent Commu-

nication Language [21]. W'e realize that there is much leverage

in articulating the domains in the mediation level within par-
titions because that is where the abstraction is best reasoned

about and understood.

When designing a domain algebra for diverse domains, it is

important to understand the constraints that the articulation
rules set over the underlying knowledge. Articulating a domain

at multiple levels increases the domain scope when compared
to the articulation rules set only at the atomic knowledge in

the domain. This is the case when respectively articulating

tables and attributes in relational databases and articulating

only the attributes. Writing articulationrules requires a good

understanding of the domain as well as an established expertise.

Our hypothesis is that a domain algebra is feasible within
a mediated architecture. Furthermore, when the articulation

rules establish a rule-based environment, we sustain the oper-

ations needed by the algebra. The mediator will sea.mlessly

re:partiti6n and re-combine articulation rules.

B. Mediation

A mediated model scales and partitions domain knowledge us-

ing the articulated knowledge rather than the domain knowledge

itself. Every integration goal requires new objective domain ex-

pertise to hand-craft or statistically learn (e.g. data mining)

[8][3][26] the necessary articulation rules. In a practical sense
there is no magic in current leading Intenet technology such as

"NetNanny" [33] or "Alexa" [4] where both technologies directly
articulate the Internet based on iP numbers 4

While an information mediation admits formal definitions in

the literature, mediation obeys strong engineering practices. To

build a functional application, the focus should be on the inter-

section of the knowledge among the domains since intersection

will define the required articulation rules. Articulating domains

4 "Alexa" establishes mappi_tgs on IP addresses and display the mappings when

an IP is selected, V_hile "Alexa"s rules are statically learned, _Ne*.Nanny"'s

rules are hand-cra/ted into a boolean type block/allow.

introduces a radical change in the definition of the domain _x-

pert.

An additional new role while articulating domain knowl-

edge for the domain expert is the partitioning of the artic-

ulations. Partitioning separates the articulation rules into

partitions or bundles (modules). For example the artic-
ulations between domains "Yahoo's category Business-and-

Economy/Companies/Automotive" and "auto.corn" reside in

one partition whereas the articulations between "auto.corn" and

"General Motors (gzn.com)" reside in another partition. Prac-

tically one may be better off with additional partitions for each

pair of knowledge sources to enhance potential sharing (e.g.

Eeneric rules like tower/upper case mapping conventions).

It is clear in this model that partitions and contexts are dis-

tinct. Partitions are regarded as a "bundle" of articulation rules

among domains. On the other hand, contexts establish the la-
bels over the domain knowledge. Since partitions are more likely

to be encapsulated, redundancy in the domain knowledge and

contexts occurs when domains tend to be homogeneous. The

formulated articulation rules are used for linkages across do-

mains will also exhibit redundancy, for instance, articulating

pairwise airline companies with airIine companies. However,

what would be preferred and more meaningful would be to ar-

ticulate pairwise airline companies with travel agencies. With a

little care and hand-crafting of the partitions, redundant artic-

ulation would be shared by sharing the appropriate partitions

(e.g. word stemming, names mapping, special parsing etc.). In

general our approach will scale much better in heterogeneous
domains.

C. Declarative Interfaces

In this section we illustrate an example of a domain knowledge

written in COI%BA's specific Interface Definition Language [38].

The same example will be used in the implementation section

to demonstrate the interoperability.

To reach object interoperability and for objects to plug and

play, clients have to know exactly what they can expect from

every object +_,,___jmight call upon for a service. In COR.BA,

the services that an object provides are described to interface

between the object itself and the rest of the system. The ob-

jective of the interface is twofold: (i) it informs clients of the

services that the objects provide as well as the access method

to invoke these services and (ii) it informs the communications

infrastructure of the format and syntax of the access methods.

COI%BA Interface Definition Language (IDL) is defined as a

language for describing the interfaces of software objects. An
interface is a description of the set of possible operations that

a client may request of an object [38]. An IDL interface specifi-

cation contains declarations of types, exceptions and constants.

As most declarative interfaces, IDL is independent of program-

ming languages, and is used to describe objects implemented.

For instance, the IDL specification of an object Bicycle and

class Shop can be described as follows:

interface Shop {
readonly attribute long parent;
void set(int long value);
long ge_();

};

interface Bicycle : Shop {
readonly attribute short size;
re&domly attribute short color;
short getSize();
short getColor0;

};



4
IEEE SYSTEIVl MAN AND CYBERNETICS, 2001

The information represented by the IDL specification for any

objects connected to a CORBA server is compiled and stored in

the In_erface Repository service which the server provides. The

interface repository can be examined by objects on the server

in order to ascertain what other objects are connected to the

server and what interfaces they provide. This allows an object

to request services from other objects on the server without

having prior knowledge of the other objects or their interfaces.

III. TERMINOLOGY, DEFINITIONS AND ASSUMPTIONS

The domain algebra scale_ partitioned domain knowledge by

operating over the articulation rules. The partitioning of a do-
3.LtDfI_ " • • • • , i_ , . ., . i _ . _'ar_ _, r_...I ._ v _ _.. _ l_r_T

formalism since the first order logic is explicitly treating the

articulation rules themselves. This traces back early work on

algebras [14] which were demonstrated by first order predicate
calculus.

Exporting data independently of the specific implementation

defines the interoperability capability of a domain. The domain

knowledge that describes the data has no representation and is

only defined by the terms and relationships. For example, data

could reflect the price of a component whereas the knowledge
is the name of the component. This decomposition of a domain

to its knowledge enables pattern matching over the terms and
relationships.

In this paper, we also address the problem of how to abstract

and encapsulate encoded knowledge within contexts. Knowl-

edge abstraction as used in th/s paper composes declarative

knowledge compositions, keeping their context through formal
predication. We also address the foundation of context formu-

lation as a basic and simple problem in propositional calculus.

Establishing context is also a novelty of this paper, and is a topic
which is poorly discussed in the literature. The abstraction and

context transformations represent the needed knowledge from
the domain source model.

The mediation model produces the environment needed to

provide users and system developers with the ability of an al-

gebra to perform the tasks of selecting, combining, extending,

specializing, and modifying multiple domain-specific knowledge.

These manipulations will support the interoperation of descrip-

tions of topics of interest when using the knowledge. These
descriptions are reusable by multiple applications that need to

access diverse data sources. The descriptive formalism makes

the mediated architecture maintainable in rapidly changing en-
vironments.

Domain Knowledge: Predicates are the basic construct of

declarative knowledge. For example, one can express in first

order logic the fact that a Book is above the Table by tak-

ing a relation symbol such as Above and defining a predicate

Above (x,y). Hence, for the object symbols Book and Table we

can declare the proposition Above(Book, Table) [20]. Often, a

predicate contains semantic conjunctions or disjunctions within
its syntax [18] to express complex relation constructs.

To deal with the inadequacy of semantics and to conform to

the syntactics of predicate logic, structured predicates are sep-

arated into simpler atomic propositions. If for example a do-

main considers the proposition Above (Book and Pen, Table), it

is equivalent to the conjunction of the following two predicates

Above(Book, Table) A Above(Pen, Table). In general, pred-

icates are atomic and do not contain semantic operators.

Writing the domain knowledge is a task that often is auto-

mated by wrappers. Either way, expertise is required in w_:ifing

the knowledge directly or formulating the wrapper itself. [3

Abstraction: Abstraction is equivalent to the production of

simpler approximations of the domain knowledge often driven

by approximation rules (e.g. stemming rules). When do-

main knowledge involves a large vocabulary, abstraction is also

the process of aggregating the domain model to another in-

volving smaller vocabulary and fewer constant, as in the in-

stance of using the term "Automotive" instead of "Business-

and-Economy/Companies/Automotive". O_en the aggregation

is performed by translating the declarative knowledge predicates

and grouping the vocabulary and constants into arbitrary well-

formed formulas. In [2], one can distinguish the different types

of abstraction such as qualitative abstraction, quantitative ab-
_rant._nn; terrni_nlo_cal abs_.raction and temnoral abstraction.

In our work, however, the notion of abstraction focuses on ma-

nipulating knowledge within context.

For example, in the case of applying the relation sym-

bol Above to the objects Book and Table and a third argu-

ment denoting a situation s, say {Llibrary, Office, Home}.

Abstraction in granularity is achieved when the proposition
Above (Book,Table,s) is translated into Above (Book,Table)

given the context (s).

Abstraction is also a task that is automated by wrappers.

Text clustering is a currently used as an abstraction technique

where distances (arbitrary metrics) to a given database of col-

lection of key terms (i.e. contexts) are computed [9]. Either

way expertise is required in writing the axioms or formulating
the wrapper itself. []

Context: Context has been proposed as a means of defin-
ing the validity of a sentence relative to a situation. For-

realizing contexts [31][24][11] allow predicates for fixed situ-

ations to be "lifted" to more dynamic contexts where situa-
tions change. The context formalism is an extension to first-

order logic in which- sentences are valid within a context. To

this end, we use the denotation of is_(c;p) such that we
have a formula of a proposition p which is true in a con-

text c. For example given a context 0trice, one can write

ist(0ffice; Above(Book, Table)). In this paper we drop
ist and consider a concise and simple form as in the formulas

(c; p). From the previous example we may write the proposition
(0trice; Above(Book,Table)). In the implementation of the

latter example, the mediator was programmed with a pattern

matching template of the form (AXIOM: 123 (CONTEXT Office)

(RELATION Above) (OBJECT Book, Table)).

At thispoint itisworth noting a dif[erencebetween the con-

textlogicformalism approach and the one in thispaper which is

thatcontext logicdefinesa defaultcoreferencerulewhich states,

that as a default,the meaning of a symbol does not change from

one context to another. We consider that symbols never mean

the same. The key in resolvingambiguity ofmeanings ofa term

isin observing the corresponding contexts.

Hence, for the interfaceexample above for the context

Factory for the bicyclecomponents, one can write

ist(FacZory; Spoke(x) A Wheel(y) A Frame(z)).

[]
Artlculatlon Rules: The term articulation axioms has been

established in [24] but refers to the rules that are used for trans-

lating concepts across domains. In this paper we refer to these

rules as the articulation rules. For instance, when the bicycle

components of a Factory match the concept of Bicycle in a
Shop. Hence one can write

±s_.(F_c÷.ory;Spoke(x)AWheel(y)A Frame(_))



MALUF AND TITAN: lEE SMC 5

ist(Shop;Bicycle(z))

The articulation rules and their specification are the compo-
nents of the domain algebra which describes the linkages that

h._vd!e interoperation between the independent systems. The

articulations allow equivalence from server-to-server and the

interactions between heterogeneous objects distributed over a
wide-area network. [3

Partltlon{ng: In a certain application, there is an interest in

certain Articulation Rules rather than the complete intersection

of the domain. Partitioning is equivalent to the production of

subsets of the ar=icula_ion rules. -v_-aen involving muJ_ipie or

large domains, partitioning is the process of selecting, combin-
ing, extending, and specializing sets of articulations. For exam-

ple a domain could be abstracted automatically in one partition

whereas an expert assertions on the domain are maintained in

another. For instance, a domain exper_ of a Factory and Shop

models can group

Partition(SEASONAL MABXET) :

ist(Fac=ory; Spoke(x) A Wheel(y) A Frame(z))

ist(Shop;Bicycle(z))

Where the partitionSEASONAL MARKET specializesan articu-
lationrule. []

IV. A DOMAIN ALGEBRA

Automatic reasoning about the interfaces requires a formal

approach to the transformation and manipulation of the artic-

ulation rules. Hence a set of operations are established for the

needed manipulations. These operations de.scribe the domain

algebra.

The domain algebra is symbolically composed of two types,

namely partitions, articulation rules and operation symbols.

The articulation rules are atomic elements of_he partitions. The
Partitions and articulation rules themselves are the elements of

the algebra. On the other hand, the symbols of operations, such

as N, U and -, stand for the algebra operations. For multiple
domain sources, the complete operations among domains are:

Intersection Create sha,rable expressions

Union Create all expressions

Difference Create not shared expressions

Intersection: The intersection is the first concept of the

domain algebra since it allows the algebra to bring together

two domains. It is equivalent to an AND operator. The

concept of intersection is not exactly like the predecessor

algebras: the intersection is hand-crafted and reflects the
articulation rules.

Union: The union concept a/lows the algebra to bring to-

gether two domains to form a new one. It is equivalent to

an OR operator. However the algebra lacks a formal ap-

proach to eliminate redundant knowledge that is common

to both. This leads to several ways of establishing the

unions of multiple domains. It is convenient to think of

knowledge as not being redundant if not explicitly speci-

fied by the articulation rules. Similarly to the natural join
in relational databases, the domain a/gebra union joins in-

terfaces when they link through shared articulation rules.

The union is restricted on/y to the knowledge that the rules

relate to. In object oriented models, inheritance and class

ownership are typical relations that an articulation rule

can relate to.

• Difference: The difference concept completes the algebra

and its presence compensates for the absence of negation

[46]. The difference operation retrieves the elements in

domains that are I_0T covered by another. Hence, the dif-

ference operation results in asymmetrical results and is not

commutative.

Such an algebra can provide a basis of interrogating multiple
interfaces which are semantically disioint, but where a shared

knowledge base has been established.

V. SURROGATES: KNOWLEDGE FORMULATION AND

P_EWRITING

The previous sections defined a few requirements of the me-

diated architecture. However, these requirements place no re-

strictions on the possible context entailment propositions can

have. In this section, we explore the effect of the partitioning

against the effect the domain context for semantic distinctions.

In this section we also explore the implication of the mediated

architecture on using the domain knowledge. We assume that

the underlying knowledge has been compiled into declarative

languages which correctly conceptualized the domain knowledge

as propositions. The mediator addresses several tasks in using

the domain knowledge, namely resolving implementation differ-

ences, interpretation and partial information.

1. Resolving composition differences: As some of the work

on designing interfaces focuses on designing data models,

one can realize the different possibilities for modeling con-

cepts. For an interoperability problem such as in data inte-

gration process, one should focus on relating the difference

among data models, e.g., mapping the relational model to

the object model which requires structural knowledge [44].

However, even if we consider for example only databases

using the same data model, there are significant differences

which make the task of relating the semantics of the data
model difficult. These differences are due to their schema

composition.
2. Interpretation: To permit the explicit knowledge as in the

case of databases to interoperate with other sources, it is

not sufficient to simply use the information on the basis

of vocabulary used in the domain. The vocabulary used

does not correspond to intended meanings. For instance

terms like Id, SSN etc. should map to Identification,
Social Security Number respectively. For each of these

domain schemas, their corresponding knowledge is exam-

ined in parsing their vocabulary and the specification of

their relationships, new surrogated (aliases) terms can be

used. Interoperability can occur in a sound manner with

propositions.

3. Partial information: To handle partial information ex-

tracted from declarative interfaces. This problem in

database interoperability is simply typified by the symp-

toms of most directed graphs which is their inability to

handle partial information [20]. For example it is very dif-

ficult to assert a proposition in a object hierarchy wkhout

a reference to a root object. The lack of reference in gen-

era/ is often found with systems that lack external schemas.

Similar pa._ial information populates most semistructured

information systems, e.g., the World Wide Web.
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A. Knowledge Formulagion and Rewriting

Our interest is in expressing articulation rules in the frame-

work of propositional calculus. This interest is based on a com-
bination of two features of the mediated architecture. First the

knowledge needed can be expressed in a form more or less in-

dependent of the uses to which the knowledge might be part o£

Second the reasoning performed by the partitioning process in-

volves basic but simple logical operations on these propositions.

In the implementation of the mediator, we specify the propo-

sition rewriting within first-order logic and use the formalism to

constrain the propositions in terms of their context. A context

can be thought of as a set of germs labeling a set of propositions.

Intuifivelb/, we assfime a context production rule which States

that the meaning of a proposition admits the context defined

by the symbols stated within the proposition. For example,

the proposition Above (Book, Table) has as possible contexts

Book and Table. Although the definition of the context produc-

tion rule is not very suggestive, it is not the case when consid-

ered within the framework of propositional calculus and context

logic. In general, we consider the formulas as propositions of the
form

(cl, ..., cM;pl, ..., pN) (1)

which are to be taken that the propositions pl,..., pN are true in
the contexts ci, ..., cM. For example, if we consider the propo-

sition (Office, Book; Above(x, Table)), then we know that

predicates Above(x, Table) is true in the context of Office
and Book. The aim of reformulation context is not to use de-

duction as the computational framework, but rather to inte_ate

knowledge into optimal articulation rules when the interopera-

tion objectives are clear.

One can become concerned with the number of possible

propositions that can be calculated from Equation 1. We sim-
plify the problem by focusing only on the articulation needed

for interoperation. Since automated inferences are potentially

capable of processing the symbolic propositions, the need for

rules about how to process the knowledge becomes essential.

Although there are no general rules in establishing the rewrit-

ing of the propositions, the mediated architecture supports the

two performative rules: spanning context and specializing. Both

reduce the scope of the interoperation.

1. Spanning Context: byproviding a proposition with con-

text such as considering the conjunction of the propo-

sition (Database; isa(x, Table)) to (Object; isa(x,

Table)) from the example stated in previous section and

having (Database, 0bject; isa(x, Table)). Formally
we have

(c,;p) ^ (c,;p) _ (c_, c2;p)
2. Specializing: by providing a context with propositions such

as

providing the proposition (0bject; isa(x, Furniture))

to the proposition (Object; isa(x,Table)) and having

(Object; isa(x,Fmiture), isa(x,Table)). Formally
we have

Since we deal with propositions, the rules of first order and

context logic apply. When the number of propositions is zero

(N = 0 in Equation I),then the vocabulary has itsown context.

For instance we have the list{Office, Table, Book}.

Another important possibilitywhen rewritingthe knowledge

isthatpropositions are always asserted within other predicates

in a recursiveform. Henceforth given the genera/denotation of

Equation I,we have recursively(c_;(c_;.,.),.)and subsequently

(Object; (Furniture; isa(x,Table))).

In general, the achievement in recursively rewriting the con-

text and propositions deals directly with the critical and dif-

ficult step in context abstraction and is also a contribution of

this paper. Although the problem of interoperating with re-
cursive definitions is di_cult to achieve with minimal inferenc-

ing, rewriting the context recursively has two advantages. (i)

it maintains the connectivity of the knowledge and (ii) it pro-

vides one way to control the context abstraction. The latter

is achieved by asserting one context for each predicate. The

current implementation does not support recursive definition.

Another potential interest in recuzsive rewriting is that it

converges to the Object Extended Model (OEM) formalism

which has_ been v.dde_ly ,z__ed, nam°2y a__ the _mterlin_-a for The

Stanford-IBM Manager of Multiple Information Sources (TSIM-

MIS) [50I. OEM is a self describing object model with nested

identity. Every object in OEM consist of an identifier and a

value. The value is either atomic, or set of objects, denoted

as set of {label, id, value}. We refer to the label and value as

context and predicate respectively.

It should be noted that one of the innovations of the medi-

ated architecture is that the proposed articulations need not

be static. The partitioning of the domain knowledge is dy-
namic where articulation rules axe asserted and retracted inde-

pendently of the underlying knowledge base.

VI. IMPLEMENTATION: "SERVER-TO-SERVER"

This section provides an overview of one implementation of

the system capable of operating over the knowledge described by

registered interfaces in COI_BA interface repositories. The sys-

tem is based on interfacing CORBA, HTML/XML type servers

since XML is most likely to become the next industry stan-

dard for Internet client-server and distributed systems. The

current generation of the system interoperates for Internet and

HTML/XML (eXtensible Markup Language) servers, there is

preference to present in this paper the complete original proto-

type which was written for CORBA applications only.

The "Mediator" software component that incorporates the

domain algebra and articulations is a First Order Logic Pro-

duction System. To allow a long-range vision and yet a fast

development to market, ot_-the_shelf components were selected

and hence the system was brought to meet numerous objec-

tives. One of the objectives is to build an extendible proto-

type, a system that can supports non-traditional applications

5 and can serve as a environment for future innovations (e.g:

when HTML/XML component was added on) and other im-

provements to enhance the information integration technology.

A. CORBA: A Brief Overview

The CORBA is a system of standards and specifications that

describes how software components can interoperate across net-

works, languages and platforms [32]. COR_A allows for client-

server interaction between heterogeneous objects distributed
over a wide-area network. COR,BA makes meta information

describing the objects in a system and their interfaces available

so that it can access other objects. Any Object connected to

an object Request Broker (ORB) can play simultaneously the

role of client and server and hence Objects can initiate calls

and respond to requests. ORB is the part of CORBA which
facilitates client-server communication and interaction between

distributed objects.

To reach object interoperability and for objects to plug and

play, clients have to know exactly what they can expect from

5Currently Science G_te map genomic databases to diseases.
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every object they might call upon for a service. In CORBA,

the services that an object provides are described to interface

between the object itself and the rest of the system. The ob-

jective of the interface is twofold: (i) it informs clients of the

services that the objects provide as well as the access method

to invoke these services and (ii) it informs the communications

infrastructure of the format of the access methods.

B. The Mediator

The mediator was built using a productive development and

delivery expert system tool which provides a complete environ-

ment for the construction of rules, knowledge and objects [40].

tool for handling a variety of knowledge with support for three

different programming paradigms: rule-based, object-oriented

and procedural. The rule-based, are primarily intended for

heuristic knowledge based on experience and hence articu/a-

tion rules. On the other hand, the object-oriented program-

ming allows complex systems to be modeled as modular com-

ponents. The five generally accepted features of object oriented

programming are class definitions, message handlers, abstrac-

tion, encapsu]ation, and inheritance. The object representation

will be used to mirror hierarchically the declarative interfaces

with object oriented flavor. The rules can interact and match

objects. The procedural programming capabilities provide the

necessary degree of freedom to expand for additional program-

ruing power. The system has Lisp like syntax to correspond to

the First Order Logic.

The mediator includes a number of features to support the

verification and validation of articulation rules, including sup-

port for modular design and partitioning of articulation rules,

static and dynamic constraint checking of values and function

arguments, and semantic analysis of rule patterns to determine

ifinconsistencies could prevent a rule interaction with the ob-

jects.

The mediator is based on B-trees indexes and a fast Rote

pattern matching algorithm inherented from [40]. The efficiency

of this algorithm is based on the assumption that data changes

slowly over time. This assumption matches perfectly the nature

of declarative interfaces that also slowly change over time.

C. The Dynamic Invocation In_erface Functions

The Dynamic Invocation Interface (DII) allows requests to

be built up and invoked dynamically to CORBA servers. Ini-

tially, clients need to know interface-related information only

at the invocation time. A DII request, like a static request,

is composed of an operation name, an object reference, and a

parameter list.

In the current implementation_ three functions were inte-

grated in the system to support the DII requests. The objective

is that given an object reference, the object's type and all in-

formation about that type can be determined at runtime by

calling functions defined by the Interface Repository. In par-

ticular, these functions can determine: the module in which

the interface was defined, if any, the name of the interface, the

interface's attributes and their definitions, the interface's oper-

ations and their definitions, including parameter, context and

exception definitions, and the inheritance specification of the

interface.

I GetC°rbalnterfacel server-name

This function is to get all the interfaces from the Interface

Repository of a CORBA server, whose name is the parameter

of this function. It will get the necessary information through

calls to the Interfaces P_epository. Moreover, this function will

then define all the interfaces locally. Although all the attributes

and operations of the remote objects will also be put into the

definition of the local objects, they are not used to store or re-

trieve values at this point. For instance, one may interrogate

interfaces for their corresponding contents= given a Factory do-

main locates at IP address 171.64.75.95,

(defcontext FACTORY)

(GetCorbaln'cerface ''171.64.75.95'')

and a Shop domain at an IP address 171.64.75.15,

(def ton'toxic SHOP)

(GetCorbaInterface ''171.64.75.15'')

Browsing the corresponding surrogates, we have

DOMAIN FACTORY

FACTORY

FRAME

Dimension

Color-table

SPOKE

WHEEL

DOMAIN SHOP

SEGP

BICYCLE

Size

Color

stock-number()

SUPPLIER

After GetCorbaInterface acquires the interfaces from the In-

terface Repository of the COI_BA server and maps them locally,

the system is ready to interoperate and create objects of the in-

terfaces. More than one object of the same class can be created

and each of them actually has its own context. The defcontext

specification is equivalent to a module definition.

To keep track of all the references to CORBA objects created

that were dynamically created, each local object references back

the actual COI_BA object to be able to retrieve attributes and

invoke operations. This also maintains the independency and

evolution of the servers. Hence a new attribute in every local

object that corresponds to a remote CORBA object is created.

This attribute is called Corba0bjeczNum, which is a mapping

between a local object and a remote object.

l MakeC°rbalnstance I interface-name object-name

This function is needed for making instances of CORBA ob-

jects, and the new information is stored in the local objects.

This information is called Corba0bjectNum and provides the

_mapping between the mediator objects and CORBA object ref-
erences on the server. The full interface description will be put

in a string, which is also stored as an attribute. This function

takes two parameters: the class name and the object name. For

instance one may interrogate the class BICYCLE in context SHOP,

or more precisely SHOP: :BICYCLE as

(MakeCorbaInstance SHOP: :BICYCLE [Bontrager])

and hence a local surrogate object [Bontrager] is created.

Each MakeCorbaInstance request updates the object references

through Corba0bjectNum.

l InvokeCorbaOperatlons I CorbaObjectNum operation re-

This function makes remote function calls to the objects re-

siding on the CORBA server. It takes in the CorbaflbjectNum,

which provides the mapping between local mediator objects and

remote CORBA object references on the server; the name of

the operation that the user wants to invoke, and finally a multi-

field value. This mu!ti-fie!d contains ._zst the return type; then

if the return is 0BJREF, the return new object instance name



and class name; and finally a list of type/value pairs of parame-

ters. Types can be OBJREF, SHORT, LONG, USHORT, ULONG, FLOAT,

DOUBLE,BOOLEAN, CHAR, or STRING. InvokeCorbaOperations func-

tion calls the necessary CORBA functions to perform the op-

eration dynamically. For instance, one may invoke a CORBA

operation

(InvokeCorbaOperations
(send [Bontrager] get-CorbaObjec_Num)
"get -stock-number"
(FLOAT)).

The specificoperation

(send [Bon_rager] _ez-CorbaGbject_'_tua)

gets the index into the CORBA object array to get the ob-

ject reference. "Get-stock-number" is the desired operation to

invoke on the object. In this example, stock-number computes

the amount of items in stock. The multi-field (FLOAT) stores the

information of the return type of the operation and information

about the parameters, in this case a float value.

D. Articulation Rules: Bi-direetional production Rules

A production rule facility allows definitions of operations that
are executed whenever specific events occur or certain condi-

tions axe met. In general, a production rule takes the form of:

If [condition] then [action)

The approach taken by the production rules community has

been to provide rules that take the activity in one direction,

namely Left Hand Side (LHS) where conditions and patterns

are described to the Right Hand Side (R/IS) where the corre-

sponding actions are listed [6]. On the other hand, azCiculations

are equivaieuce rule_ and a new mechanism was adopted to ref-

erence them. In general, an articulation rule takes the form
of:

[condition-action l equivalent [condition-action l

The syntax of the writing of articulation rules is based on an

extension of production rule construction. An articulation rule

is parsed in two directions and hence it becomes equivalent to

two production rules. The current implementation of the articu-

lation rule system includes three commands for defining and ma-

nipulating rules, namely define-articulation, delete-articulation

and modify-articulation.

A production rule is activated when the condition is matched

and the actions are executed. On the other hand, the actions

modify the working memory according to the rule specifications.

Since the mediator lookup is purely pattern-based, the trigger-

ing events axe directly linked to the objects manipulated with

the Dynamic Invocation Interface Functions, namely GetCor-

6alnterfac% MakeCorbalns_ance and InvokeCorbaOpera_ions.

[ define-articulatlon 1 articulation-name partition _ parti-
tion

define-articulation is a mediator function that creates rules

construct. This function effectively creates two production

rules. For instance, a new rule, namely new-rule, can be defined

as

(define-articulation new-rule
(object (is-a FACTORY: :FRAME)

(Dimension ?x := (map 7x "I0 01-04;..")))
<=>
(object (is-a SHOP: :BICYCLE)

(Size ?x := (map ?x "01-04 I0;.."))))

The is-a constraint is native to object-oriented relations and

is used for specifying class constraints. This constraint also

encompasses subclasses of the matching classes. On the other

hand, the := symbol is a new notation and is a predicate return

value constraint operator. When needed, it is possible to use

the return value of the external fimction map to modify the
value of a field. In the conversion of an articulation rule to

production rules, the predicate return value constraint operator
is translated in the action list.

Redefining a current!y existing articulation rule causes the

previous rule with the same name to be removed.

[ 5icier.e: .at tie.uJa_tt |__o_n..] articulation-name

The delete-articulation removes a previously defined articu-

lation rule. Since an articulation is effectively two production

rules, the deletion of an articulation rule is equivalent to the

deletion of two production rules. The previously created rule
new-rule can be deleted as

(delete-articulation ne_-rule)

I modify-articulation partition ¢_ patti-articulation-name

tion

The modify-articulation action allows the partitions of artic-

ulation rules to be modified. The partitions of an articulation

rules can be changed after the rule has been defined. How-

ever, this requirement is not enforced since the modify action is

actually a deletion followed by the new definition. The modify-

articulation is meant to complete the set of defining and manip-

ulating the articulation rules.

(modify-articulation new-rule
(object (is-a FACTORY::FKAME [ DEPfT::FRAME)

(Dimension ?x))
<=>
(object (is-a SHOP: :BICYCLE)

(Height 7x)))

The " I" constraintis a connective constraint. The medi-

ator syntax allow three connective constraint% namely ''_"

(and),"l" (or)and ..... (not). The '_ '' Constraint is sat-

isfied if two adjoining constrains axe satisfied. The " I " con-

straint is satisfied if either of the two adjoining constrained are

satisfied. The ' ' -' ' constraint is satisfied if the following con-

straint is not satisfied (Further details on predicate connective
constraint and other features can be found in the the technical

.overview guide).

The two examples introduced in the define-articulation and
modify-articulation cases demonstrate the mechanism of relat-

ing partitions. Since a partition may include more that one con-

dition, conjunctive conditions can be listed with no constraint

operator. The reason of listing two partitions with different con-

texts in the articulation rule as in the modify action examples

demonstrate the multiple inheritance capability.

E. Operatin 9 over Domains

This section illustrates three examples of the domain ontol-

ogy algebra relating to three operations, namely intersection,

union and difference. The articulation rule examples introduced

in Section VI-D can be alternatively edited in a user interface

through tables. The intersection, union and difference exam-

ples in the current section refers to the set of articulation rules

described in Table VI-E. Reading Figure VI-E from right to

left, the articulation rules column displays the rule number. An

interface name and class name are possibie contexts for an en-

try. The predication occurs at the attribute level. Mapping

functions are expanded to their contents.
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I. Domains intersection: A FACTORY can query the domain

SHOP and acquire the number of BICYCLE sorted by color
and amount in stock.

2. Domains union: A consulting agency can verify for the do-

main FACrORY and acquire the number of BICYCLE, so_ed

by colorand amount in stock, for more than one shop

This reflectsa union overmultiple domain intersections.

3. Domain differences: A FACTORY can query the domain

SHOP and acquire the components or accessories that the

SHOP relatesto the BICYCLE, but FACTORY does not manu-

facture.

While intersectionof multipledomain iscomparably smallto

the domain themselves,placing the articulationrulesin main

memory is viable way to gain performance and thereby make

it suitable for real time applications. These applications are

envisages to interoperate with hundreds of domains.

VII. STATUS, CONCLUSIONS AND FUTURE WORK

The current implementation is currently written in C/C++

ans integrates the C Language Integrated Production System

[22][40]. Since user interface functions and data access functions
are separated out into other components, the domain algebra

consists mainly of rules.

The system as described in this paper is fully implemented

and operational in Internet applications. The CORBA plu-

gin component consists approximately of 4,000 lines of C/C++

code. The actual coding took about three man-months, but the

system was carefully designed before any implementation be-

gan. The fizll blown mediator system exceeds the 150,000 lines

of C/C++ code.

The fact that the system could be implemented in a short

time reflects well on the integration aspects. This also under-

lines the intent of the author of system integration as opposed

to coding. One intention of the implementation is that it can

be used by researchers not involved in establishing domain alge-

bras. The wrapper that translates C01%BA interfaces to the me-

diator is currently made available as a public software package

and can be down-ioaded from (www-db. stanford, edu/-maIuf/-

ccnp/ccnp.html). The orginal COI_A wrapper was written

jointly w_th Marcus Chart at Stanford University, To this stage
the software has been down-loaded to over 100 researchers or

users across the Internet.

This paper presents an approach that uses context formalism

in the development of standard knowledge representations and

knowledge sharing and plays a role in knowledge interoperabil-

ity. The context approach provides a powerful tool to define the

validity of knowledge relative to a situation. This paper address

the problem of how to abstract and entail encoded knowledge

within contexts.

We describe an environment to interface underlying knowl-

edge resources to the outside world. The objectives set in this

paper are to establish the intermediate model needed to sustain

interoperability and to produce the needed environment. Hence,
users and system developers can translate knowledge bases that

provide comprehensive but simple coverage of topics of interest,

knowledge usability and re-usability by different applications

and knowledge maintenance in rapidly changing environments.

The mediator can bring about a shift from merging knowledge

to the manipulation, enhancement, and maintenance of domain

intersections. The main objective of the mediator will be to

handle an algebra that combines and partitions structures in a
sound and well-behaved manner.

This paper describes a system of alIowmg multiple declarative

interface interactions between heterogeneous objects distributed

over a wide-area network. The objectives set in this paper are

to establish the articulation needed for a domain algebra and

thus sustain interoperation.
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Predicate

Translation Function I

01-04 yr$ ffi 10"

05-08 yrs = 14"

09-11 yrs = 16"

12-15 yrs = 18"

16-18 yTs = 20"

18-65 yTs = 22"

#FC2334 =Biack I

#FC3365 = Red

#FC5467 - Blue

#FC8934 = Whi1:e

#FC2422 _ Yello.

#FC2545 = Grey

Context

Attribute Class I Interface

Size BrCYCLE

FRAME

SROP

FACTORYDimension

Articulation Rule
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